Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
BMJ Open ; 14(4): e079988, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569688

RESUMO

BACKGROUND: HIV drug resistance (DR) is a growing threat to the durability of current and future HIV treatment success. DR testing (DRT) technologies are very expensive and specialised, relying on centralised laboratories in most low and middle-income countries. Modelling for laboratory network with point-of-care (POC) DRT assays to minimise turnaround time (TAT), is urgently needed to meet the growing demand. METHODS: We developed a model with user-friendly interface using integer programming and queueing theory to improve the DRT system in Kisumu County, Kenya. We estimated DRT demand based on both current and idealised scenarios and evaluated a centralised laboratory-only network and an optimised POC DRT network. A one-way sensitivity analysis of key user inputs was conducted. RESULTS: In a centralised laboratory-only network, the mean TAT ranged from 8.52 to 8.55 working days, and the system could not handle a demand proportion exceeding 1.6%. In contrast, the mean TAT for POC DRT network ranged from 1.13 to 2.11 working days, with demand proportion up to 4.8%. Sensitivity analyses showed that expanding DRT hubs reduces mean TAT substantially while increasing the processing rate at national labs had minimal effect. For instance, doubling the current service rate at national labs reduced the mean TAT by only 0.0%-1.9% in various tested scenarios, whereas doubling the current service rate at DRT hubs reduced the mean TAT by 37.5%-49.8%. In addition, faster batching modes and transportation were important factors influencing the mean TAT. CONCLUSIONS: Our model offers decision-makers an informed framework for improving the DRT system using POC in Kenya. POC DRT networks substantially reduce mean TAT and can handle a higher demand proportion than a centralised laboratory-only network, especially for children and pregnant women living with HIV, where there is an immediate push to use DRT results for patient case management.


Assuntos
Infecções por HIV , Laboratórios , Criança , Humanos , Feminino , Gravidez , Quênia , Infecções por HIV/tratamento farmacológico , Sistemas Automatizados de Assistência Junto ao Leito , Engenharia , Testes Imediatos
2.
Nat Commun ; 15(1): 3111, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600075

RESUMO

DNA methyltransferases DNMT3A- and DNMT3B-mediated DNA methylation critically regulate epigenomic and transcriptomic patterning during development. The hotspot DNMT3A mutations at the site of Arg822 (R882) promote polymerization, leading to aberrant DNA methylation that may contribute to the pathogenesis of acute myeloid leukemia (AML). However, the molecular basis underlying the mutation-induced functional misregulation of DNMT3A remains unclear. Here, we report the crystal structures of the DNMT3A methyltransferase domain, revealing a molecular basis for its oligomerization behavior distinct to DNMT3B, and the enhanced intermolecular contacts caused by the R882H or R882C mutation. Our biochemical, cellular, and genomic DNA methylation analyses demonstrate that introducing the DNMT3B-converting mutations inhibits the R882H-/R882C-triggered DNMT3A polymerization and enhances substrate access, thereby eliminating the dominant-negative effect of the DNMT3A R882 mutations in cells. Together, this study provides mechanistic insights into DNMT3A R882 mutations-triggered aberrant oligomerization and DNA hypomethylation in AML, with important implications in cancer therapy.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Leucemia Mieloide Aguda , Humanos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metilação de DNA/genética , DNA/metabolismo
4.
Chem Res Toxicol ; 37(3): 451-454, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38417054

RESUMO

Alkyl phosphotriester (alkyl-PTE) lesions in DNA are shown to be poorly repaired; however, little is known about how these lesions impact DNA replication in human cells. Here, we investigated how the SP and RP diastereomers of four alkyl-PTE lesions (alkyl = Me, Et, nPr, or nBu) at the TT site perturb DNA replication in HEK293T cells. We found that these lesions moderately impede DNA replication and that their replicative bypass is accurate. Moreover, CRISPR-Cas9-mediated depletion of Pol η or Pol ζ resulted in significantly attenuated bypass efficiencies for both diastereomers of nPr- and nBu-PTE adducts, and the SP diastereomer of Et-PTE. Diminished bypass efficiencies were also detected for the Rp diastereomer of nPr- and nBu-PTE lesions upon ablation of Pol κ. Together, our study uncovered the impact of the alkyl-PTE lesions on DNA replication in human cells and revealed the roles of individual translesion synthesis DNA polymerases in bypassing these lesions.


Assuntos
Replicação do DNA , Humanos , Células HEK293
6.
Health Policy Plan ; 39(1): 44-55, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949109

RESUMO

Point-of-care (POC) technologies-including HIV viral load (VL) monitoring-are expanding globally, including in resource-limited settings. Modelling could allow decision-makers to consider the optimal strategy(ies) to maximize coverage and access, minimize turnaround time (TAT) and minimize cost with limited machines. Informed by formative qualitative focus group discussions with stakeholders focused on model inputs, outputs and format, we created an optimization model incorporating queueing theory and solved it using integer programming methods to reflect HIV VL monitoring in Kisumu County, Kenya. We modelled three scenarios for sample processing: (1) centralized laboratories only, (2) centralized labs with 7 existing POC 'hub' facilities and (3) centralized labs with 7 existing and 1-7 new 'hub' facilities. We calculated total TAT using the existing referral network for scenario 1 and solved for the optimal referral network by minimizing TAT for scenarios 2 and 3. We conducted one-way sensitivity analyses, including distributional fairness in each sub-county. Through two focus groups, stakeholders endorsed the provisionally selected model inputs, outputs and format with modifications incorporated during model-building. In all three scenarios, the largest component of TAT was time spent at a facility awaiting sample batching and transport (scenarios 1-3: 78.7%, 89.9%, 91.8%) and waiting time at the testing site (18.7%, 8.7%, 7.5%); transportation time contributed minimally to overall time (2.6%, 1.3%, 0.7%). In scenario 1, the average TAT was 39.8 h (SD: 2.9), with 1077 h that samples spent cumulatively in the VL processing system. In scenario 2, the average TAT decreased to 33.8 h (SD: 4.8), totalling 430 h. In scenario 3, the average TAT decreased nearly monotonically with each new machine to 31.1 h (SD: 8.4) and 346 total hours. Frequency of sample batching and processing rate most impacted TAT, and inclusion of distributional fairness minimally impacted TAT. In conclusion, a stakeholder-informed resource allocation model identified optimal POC VL hub allocations and referral networks. Using existing-and adding new-POC machines could markedly decrease TAT, as could operational changes.


Assuntos
Infecções por HIV , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Quênia , Testes Imediatos , Carga Viral/métodos , Sistemas de Apoio a Decisões Clínicas
7.
Biomed Chromatogr ; 38(3): e5795, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071756

RESUMO

Following the highly successful Chinese American Society for Mass Spectrometry (CASMS) conferences in the previous 2 years, the 3rd CASMS Conference was held virtually on August 28-31, 2023, using the Gather.Town platform to bring together scientists in the MS field. The conference offered a 4-day agenda with a scientific program consisting of two plenary lectures, and 14 parallel symposia in which a total of 70 speakers presented technological innovations and their applications in proteomics and biological MS and metabo-lipidomics and pharmaceutical MS. In addition, 16 invited speakers/panelists presented at two research-focused and three career development workshops. Moreover, 86 posters, 12 lightning talks, 3 sponsored workshops, and 11 exhibitions were presented, from which 9 poster awards and 2 lightning talk awards were selected. Furthermore, the conference featured four young investigator awardees to highlight early-career achievements in MS from our society. The conference provided a unique scientific platform for young scientists (i.e. graduate students, postdocs, and junior faculty/investigators) to present their research, meet with prominent scientists, learn about career development, and job opportunities (http://casms.org).


Assuntos
Espectrometria de Massas , Lipidômica , Preparações Farmacêuticas , Proteômica , Congressos como Assunto
8.
Front Neurosci ; 17: 1291446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928731

RESUMO

Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.

9.
Nature ; 623(7987): 580-587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938769

RESUMO

Microsatellite repeat expansions within genes contribute to a number of neurological diseases1,2. The accumulation of toxic proteins and RNA molecules with repetitive sequences, and/or sequestration of RNA-binding proteins by RNA molecules containing expanded repeats are thought to be important contributors to disease aetiology3-9. Here we reveal that the adenosine in CAG repeat RNA can be methylated to N1-methyladenosine (m1A) by TRMT61A, and that m1A can be demethylated by ALKBH3. We also observed that the m1A/adenosine ratio in CAG repeat RNA increases with repeat length, which is attributed to diminished expression of ALKBH3 elicited by the repeat RNA. Additionally, TDP-43 binds directly and strongly with m1A in RNA, which stimulates the cytoplasmic mis-localization and formation of gel-like aggregates of TDP-43, resembling the observations made for the protein in neurological diseases. Moreover, m1A in CAG repeat RNA contributes to CAG repeat expansion-induced neurodegeneration in Caenorhabditis elegans and Drosophila. In sum, our study offers a new paradigm of the mechanism through which nucleotide repeat expansion contributes to neurological diseases and reveals a novel pathological function of m1A in RNA. These findings may provide an important mechanistic basis for therapeutic intervention in neurodegenerative diseases emanating from CAG repeat expansion.


Assuntos
Adenosina , Caenorhabditis elegans , Proteínas de Ligação a DNA , Drosophila melanogaster , Doenças Neurodegenerativas , RNA , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/química , RNA/genética , RNA/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Citoplasma/metabolismo , Modelos Animais de Doenças
10.
ACS Cent Sci ; 9(9): 1799-1809, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37780356

RESUMO

N6-Methyladenine (6mA) is a naturally occurring DNA modification in both prokaryotes and eukaryotes. Herein, we developed a deaminase-mediated sequencing (DM-seq) method for genome-wide mapping of 6mA at single-nucleotide resolution. The method capitalizes on the selective deamination of adenine, but not 6mA, in DNA mediated by an evolved adenine deaminase, ABE8e. By employing this method, we achieved genome-wide mapping of 6mA in Escherichia coli and in mammalian mitochondrial DNA (mtDNA) at single-nucleotide resolution. We found that the 6mA sites are mainly located in the GATC motif in the E. coli genome. We also identified 17 6mA sites in mtDNA of HepG2 cells, where all of the 6mA sites are distributed in the heavy strand of mtDNA. We envision that DM-seq will be a valuable tool for uncovering new functions of 6mA in DNA and for exploring its potential roles in mitochondria-related human diseases.

11.
Anal Chem ; 95(41): 15141-15145, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787459

RESUMO

Profilin 1 (PFN1) is a cytoskeleton protein that modulates actin dynamics through binding to monomeric actin and polyproline-containing proteins. Mutations in PFN1 have been linked to the pathogenesis of familial amyotrophic lateral sclerosis (ALS). Here, we employed an unbiased proximity labeling strategy in combination with proteomic analysis for proteome-wide profiling of proteins that differentially interact with mutant and wild-type (WT) PFN1 proteins in human cells. We uncovered 11 mRNA splicing proteins that are preferentially enriched in the proximity proteomes of the two ALS-linked PFN1 variants, C71G and M114T, over that of wild-type PFN1. We validated the preferential interactions of the ALS-linked PFN1 variants with two mRNA splicing factors, hnRNPC and U2AF2, by immunoprecipitation, followed with immunoblotting. We also found that the two ALS-linked PFN1 variants promoted the exonization of Alu elements in the mRNAs of MTO1, TCFL5, WRN and POLE genes in human cells. Together, we showed that the two ALS-linked PFN1 variants interacted preferentially with mRNA splicing proteins, which elicited aberrant exonization of the Alu elements in mRNAs. Thus, our work provided pivotal insights into the perturbations of ALS-linked PFN1 variants in RNA biology and their potential contributions to ALS pathology.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Profilinas/genética , Profilinas/metabolismo , Actinas/metabolismo , Proteômica , Mutação , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
12.
Immunity ; 56(11): 2542-2554.e7, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37714152

RESUMO

Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.


Assuntos
Imunidade Inata , Receptor X Retinoide gama , Humanos , Alarminas , Linfócitos , Inflamação , Citocinas/metabolismo , Intestino Delgado/metabolismo
13.
J Am Chem Soc ; 145(39): 21646-21660, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733759

RESUMO

R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.


Assuntos
Estruturas R-Loop , Precursores de RNA , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , DNA/química , RNA/química , Regiões Promotoras Genéticas
14.
Science ; 381(6663): 1189-1196, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708282

RESUMO

Eosinophils are granulocytes that play an essential role in type 2 immunity and regulate multiple homeostatic processes in the small intestine (SI). However, the signals that regulate eosinophil activity in the SI at steady state remain poorly understood. Through transcriptome profiling of eosinophils from various mouse tissues, we found that a subset of SI eosinophils expressed neuromedin U (NMU) receptor 1 (NMUR1). Fate-mapping analyses showed that NMUR1 expression in SI eosinophils was programmed by the local microenvironment and further enhanced by inflammation. Genetic perturbation and eosinophil-organoid coculture experiments revealed that NMU-mediated eosinophil activation promotes goblet cell differentiation. Thus, NMU regulates epithelial cell differentiation and barrier immunity by stimulating NMUR1-expressing eosinophils in the SI, which highlights the importance of neuroimmune-epithelial cross-talk in maintaining tissue homeostasis.


Assuntos
Eosinófilos , Imunidade nas Mucosas , Intestino Delgado , Neuropeptídeos , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Animais , Camundongos , Eosinófilos/imunologia , Intestino Delgado/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Técnicas de Cocultura , Organoides
15.
Nucleic Acids Res ; 51(16): 8434-8446, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37427784

RESUMO

High-order chromatin organization plays an important role in biological processes and disease development. Previous studies revealed a widespread occurrence of guanine quadruplex (G4) structures in the human genome, with enrichment in gene regulatory regions, especially in promoters. However, it remains unclear whether G4 structures contribute to RNA polymerase II (RNAPII)-mediated long-range DNA interactions and transcription activity. In this study, we conducted an intuitive overlapping analysis of previously published RNAPII ChIA-PET (chromatin interaction analysis with paired-end tag) and BG4 ChIP-seq (chromatin immunoprecipitation followed by sequencing using a G4 structure-specific antibody) data. We observed a strong positive correlation between RNAPII-linked DNA loops and G4 structures in chromatin. Additionally, our RNAPII HiChIP-seq (in situ Hi-C followed by ChIP-seq) results showed that treatment of HepG2 cells with pyridostatin (PDS), a small-molecule G4-binding ligand, could diminish RNAPII-linked long-range DNA contacts, with more pronounced diminutions being observed for those contacts involving G4 structure loci. RNA sequencing data revealed that PDS treatment modulates the expression of not only genes with G4 structures in their promoters, but also those with promoters being connected with distal G4s through RNAPII-linked long-range DNA interactions. Together, our data substantiate the function of DNA G4s in RNAPII-associated DNA looping and transcription regulation.


Assuntos
Cromatina , Quadruplex G , Humanos , Cromatina/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Cromossomos/metabolismo , DNA/genética
16.
JACS Au ; 3(6): 1650-1657, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388701

RESUMO

In the presence of monovalent alkali metal ions, G-rich DNA sequences containing four runs of contiguous guanines can fold into G-quadruplex (G4) structures. Recent studies showed that these structures are located in critical regions of the human genome and assume important functions in many essential DNA metabolic processes, including replication, transcription, and repair. However, not all potential G4-forming sequences are actually folded into G4 structures in cells, where G4 structures are known to be dynamic and modulated by G4-binding proteins as well as helicases. It remains unclear whether there are other factors influencing the formation and stability of G4 structures in cells. Herein, we showed that DNA G4s can undergo phase separation in vitro. In addition, immunofluorescence microscopy and ChIP-seq experiments with the use of BG4, a G4 structure-specific antibody, revealed that disruption of phase separation could result in global destabilization of G4 structures in cells. Together, our work revealed phase separation as a new determinant in modulating the formation and stability of G4 structures in human cells.

17.
J Proteome Res ; 22(7): 2179-2185, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37348120

RESUMO

Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating various biological processes. Few studies, however, were conducted to investigate the functions of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected RWE proteins were down-regulated during osteogenic differentiation, and they included mainly proteins involved in RNA methylation and pseudouridylation. Protein-protein interaction (PPI) network analysis unveiled significant associations between the down-regulated epitranscriptomic RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data were deposited on ProteomeXchange (PXD039249).


Assuntos
Células-Tronco Embrionárias Humanas , Osteogênese , Humanos , Osteogênese/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diferenciação Celular/genética , RNA/genética
18.
Anal Chem ; 95(25): 9672-9679, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296074

RESUMO

Trimethylation of lysine 36 on histone H3 (H3K36me3), an epigenetic mark associated with actively transcribed genes, plays an important role in multiple cellular processes, including transcription elongation, DNA methylation, DNA repair, etc. Aberrant expression and mutations of the main methyltransferase for H3K36me3, i.e., SET domain-containing 2 (SETD2), were shown to be associated with various cancers. Here, we performed targeted profiling of 154 epitranscriptomic reader, writer, and eraser (RWE) proteins using a scheduled liquid chromatography-parallel-reaction monitoring (LC-PRM) method coupled with the use of stable isotope-labeled (SIL) peptides as internal standards to investigate how H3K36me3 modulates the chromatin occupancies of epitranscriptomic RWE proteins. Our results showed consistent changes in chromatin occupancies of RWE proteins upon losses of H3K36me3 and H4K16ac and a role of H3K36me3 in recruiting METTL3 to chromatin following induction of DNA double-strand breaks. In addition, protein-protein interaction network and Kaplan-Meier survival analyses revealed the importance of METTL14 and TRMT11 in kidney cancer. Taken together, our work unveiled cross-talks between histone epigenetic marks (i.e., H3K36me3 and H4K16ac) and epitranscriptomic RWE proteins and uncovered the potential roles of these RWE proteins in H3K36me3-mediated biological processes.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Histonas/metabolismo , Cromatina , Metilação de DNA , Metiltransferases/metabolismo
19.
Mol Cell Proteomics ; 22(6): 100559, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105363

RESUMO

The 2nd CASMS conference was held virtually through Gather. Town platform from October 17 to 21, 2022, with a total of 363 registrants including an outstanding and diverse group of scientists at the forefront of their research fields from both academia and industry worldwide, especially in the United States and China. The conference offered a 5-day agenda with an exciting scientific program consisting of two plenary lectures, 14 parallel symposia, and 4 special sessions in which a total of 97 invited speakers presented technological innovations and their applications in proteomics & biological mass spectrometry and metabo-lipidomics & pharmaceutical mass spectrometry. In addition, 18 invited speakers/panelists presented at 3 research-focused and 2 career development workshops. Moreover, 144 posters, 54 lightning talks, 5 sponsored workshops, and 14 exhibitions were presented, from which 20 posters and 8 lightning talks received presentation awards. Furthermore, the conference featured 1 MCP lectureship and 5 young investigator awardees for the first time to highlight outstanding mid-career and early-career rising stars in mass spectrometry from our society. The conference provided a unique scientific platform for young scientists (i.e., graduate students, postdocs and junior faculty/investigators) to present their research, meet with prominent scientists, and learn about career development and job opportunities (http://casms.org).


Assuntos
Espectrometria de Massas , Sociedades Científicas , Humanos , China , Preparações Farmacêuticas , Proteômica , Estados Unidos
20.
Anal Chem ; 95(17): 6879-6887, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083350

RESUMO

The small GTPase superfamily of proteins are crucial for numerous cellular processes, including early development. The roles of these proteins in osteogenic differentiation, however, remained poorly explored. In this study, we employed a high-throughput targeted proteomic method, relying on scheduled liquid chromatography-multiple-reaction monitoring (LC-MRM) coupled with synthetic stable isotope-labeled peptides, to interrogate systematically the temporal responses of the entire small GTPase proteome during the course of osteogenic differentiation of H9 human embryonic stem cells. Our results demonstrated that the method offers high quantification accuracy, reproducibility, and throughput. In addition, the quantification results revealed altered expression of a large number of small GTPases accompanied with osteogenic differentiation, especially those involved with autophagy. We also documented a previously unrecognized role of KRAS in osteogenesis, where it regulates the accumulation of extracellular matrix for mineralization through attenuating the activity of secreted matrix metalloproteinase 9 (MMP9). Together, this study represents a novel application of a state-of-the-art analytical method, i.e., targeted quantitative proteomics, for revealing the progressive reprogramming of the small GTPase proteome during osteogenic differentiation of human embryonic stem cells, and our results revealed KRAS as a new regulator for osteogenesis.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Osteogênese , Proteoma/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Reprodutibilidade dos Testes , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...